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I. INTRODUCTION

In this paper we shall develop constructive methods for solving the
fourth-order elliptic equation

L1L1u + au... - 2buxy + CUyy + du~ + euy +fu = O. (1.1 )

Equations of this type occur frequently in the mathematical theory of
elasticity. For example, the differential equation of bending of an isotropic
shell, subject to tensile forces in the middle plane and lying on an elastic
foundation, is given by [3]

&2 a~ a~
12(1- Jl2) L1L1u - H~ ax2- Hy ay 2+ C 1U- C2 L1U = q(x, y). (1.2)

Here u is taken to be the vertical displacement.
There are two well-known function theoretic approaches to the solution

of this problem (see Bergman [1,2] and Vekua [4]). Both of these
methods reformulate Eq. (1.1) as a complex hyperbolic equation and then
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seek an integral representation in terms of a kernel which is to be deter
mined. If the complex coordinates z: = x + iy, and ,: = x - iy are
introduced, the equation (1.1) becomes formally hyperbolic, i.e.,

where the new coefficients are

M = N=-h[a-c+ ib], L=Ha+c], A = 15 = -h (d + ie ), (1.4)

and C=-hf
It is of course understood that the coefficients of (1.1) are assumed to be
analytic function of x and y in a sufficiently large bicyllinder so that our
continuation to the z, , space is meaningful. For simplicity of discussion let
us assume that the coefficients are entire.

Bergman [2] has shown that all solutions of (1.3), in a neighborhood of
the origin, may be represented in the form

U(z, 0 = ktl (I [E(I,k)(Z,', t)fk Gz[l- t
2
])

+ E(lI.k)(Z, " t) glc G'[1- t
2

] ) ] P' (1.5 )

where the functions E(x,k)(z, " t) satisfy a partial differential equation (to be
specified below), and the initial conditions

E(I,I)(z, 0, t) = E(lI,I)(O,', t) = 1,

E(I,2)(Z, 0, t) = E(Il.2)(0, " t) =°
E(I.I )(z ° t) = E(l1 )(0 r t) = °;; " z , 1:",

E?,2)(Z, 0, t) = E1Il ,2)(0, " t) = 1.

The functions E(I.k) satisfy the differential equation [2]

(1.6 )

Z-l t -I(1 - t2)[Ezw +MEz, + !LE" + !AE,]

+ !z-2t -2(1 - t2)2[Ew,+ MElt] - Z-l t -2[Ez" + MEz + !LE,

+ !AE] - ~z-2t-3(1- t4)[E,,, + ME,] + ~z-2t-4[E" + ME]

+L[E] =0, (1.7)



FOURTH-ORDER ELLIPTIC EQUATIONS 57

and the functions E(II.k) satisfy the differential equation

(-1(-1(1- (2)[E(zzt + NE(t + !LEtz + !DEtJ

+ E -2( -2(1- (2)2[Zzztt + NEttJ - z -1(-2[E(zz + NE(

+ !LEz+ !DEJ - E- 2
(-3(1- (4)[Et=z + NErJ

+ ~(-2(-4[E== + NEJ + L*(E) = 0 (1.7')

where

However, what is more significant is that Bergman has given a recursive
scheme for computing the coefficients P(v)(z, 0 of the Taylor expansion of
E as a function of (; namely, if

00

E(I)(z, (, () := P(O)(z, 0 + L (2vZvp(vl(z, 0,
V= 1

(1.8 )

then these coefficients may be computed by solving recursively the differen
tial equations

D,(P(O»)=O,

DI(P(l») = -4D,(P~O») - 2D2(P(O»),

D(p(n+2»)=_ I [D(P~~l)+(2n+l)D(p~n+'») (1.9)
I n2 + 2n + 3/4 I .. I •

+ D (p(n») + (n +~) D (p(n+ I») + NP(nl + DP(n) + cp(n l]2= 22 ,,( ,

n~O.

Here D,(H):= H,,+MH and D 2(H):= LH(+AH.
It has been shown [2J that there exist two sequences of functions

p(l.I.n)(z,O and p(I.2.n)(z, 0, n~O, which satisfying (1.9) such that the
initial conditions

p(I.I.O)(Z, 0) = 1,

p(l.I.n)(z, 0) = 0,

p(I.2.0l(Z, 0) = 0,

p(l.2.n)(z, 0) = 0,

P(l·I.O)(Z 0) = 0( , ,
p~I,1.n)(z, 0) = 0

p~I,2,O)(z, 0) = 1,

p~I.2.n)(z, 0) = 0

(n = 1, 2,... ),

(n = 1, 2,... ).

(1.10)
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Similarly, we may get the Taylor expansion of E(l1) as a function of t.

00

E(lI l(Z, (, t) = p(II.0)(Z, 0 + L t2vzvp(vl(z, 3)
v=1

(1.8' )

their coefficients may be computed by solving recursively the differential
equations

(1.9' )(n~O)

D!(p(II.0») = 0

D!(P(lI,l») = -4D!(P~II.0») _ 2D~(P(II·Ol)

D*(p(lI.n+2 l ) = _ 1 [D*(p(lI.n l ) + (2n+ 1)D*(p(lI,n+ll)
1 n2 + 2n + 3/4 1 (( I. (

+ D~(p~lI.nl) + (n +DD~(p(lI.n + 1l)

+ MP~~I.n) + AP~II,nl + cp(lI,nl]

Here D!(H):= Hzz+NH, D~:= LHz+BH.
Another representation has been given to the complex equation (1.3) by

Vekua [4]. This representation makes use of the complex Riemann
function. In this paper we shall show that these two methods are
equivalent, and moreover, use the Bergman recursive scheme to compute
the Riemann function. This will lead to a new representation for the
solution of the Goursat problem, and several examples illustrating special
cases of interest will be worked out.

II. GOURSAT'S PROBLEM

As the solutions to (1.3) are uniquely determined by their Goursat data,
the solutions generated by the Bergman and Vekua mappings may be put
in a one-to-one correspondence via their respective Goursat data.
Moreover, the analytic associates of each of these mappings may also be
put in a one-to-one correspondence. This in turn will show the equivalence
of these two approaches. To this end let us introduce the functions

(2.1 )

(k = 1, 2),
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where fk and gk are the analytic functions of the representation (1.5). Then
we have the identities

(n = 1, 2, ... ). and the representation (1.5), (1.8) may be written in the form

2 [ co p(l.k.n)(z 0 f.z
U(z,O= L p(l,k,O)(z,OtPdz)+ L 2n ' (z-st- 1

k ~ 1 n = 1 2 B(n, n + 1) 0

. tPk(S) dsJ + [P(II.k.O)(Z, 0 ljJ k(O +f p(I1.k,n)(z, 0 (2.2)

. ( (, - 0"t - 1 ljJ k( 0") dO"]

If the origin is shifted from (0.0) in the z-' space to (t, r), the represen
tation (2.2) takes the form

where the p(I,k,O)(Z, " r) are solutions of the system (1.9) which satisfy the
initial conditions

p(l,l.O)(Z, r, r) = 1, p~I,1,O)(z, r, r) = 0,

p(I.l,n)(z, r, r) = 0, p~l,1,n)(z, r, r) =° (n ~ 1),

and

p(I,2,n)(z, r, r) = 0, P~I,2,O)(z,r, r) = 1,

p(I,2,n)(z, 't", 't") = 0, p~I,2,n)(z, 't", 't") = ° (n ~ 1).

(2.4)

(2.5)
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The p(II.k.n)(z, r, r) are likewise solutions of the system (1.9'), and
moreover, satisfy

and

p(II,1,O)(t, (, t) = 1,

p(II.l.n)(t, (, t) = 0,

p(II.2.0)( t, (, t) = 0,

p(II.2.n)(t, " t) = 0,

P1I
I,1,O) ( t, " t) = 0,

P1II .1•
n )(t, " t) = ° (n;;:: 1),

P1II.2•O)(t, (, t) = 1,

p~II.2.n)(t, " t) =° (n;;:: 1).

(2.6)

(2.7)

G(t, r, t, 0=0,

The complex Riemann function, G( t, r, z, 0, for Eq. (1.3) is a solution of
this equation, which moreover, satisfies the special Goursat data [4] (see,
in particular, pp. 186, 187, Eq. (37.9), (37.11), (37.12).)

oG
oz (t, r, t, 0 = X((, t, r),

G(t, r, z, r) = 0, ~~ (t, r, z, r) = X*(z, t, r).

(2.8)

The functions X, X* appearing in the characteristic conditions (2.8) are
solutions of ordinary differential equations, which satisfy prescribed initial
conditions. In our case, these are

d2X
d(2 +MX=O,

(2.9)
dX

X(r, t, r) = 0, d((r,t,r)=1.

and

d2X*
dz2 +NX*=O,

dX*
(2.10)

X*(t, t, r)=O, dz (t,t,r)=1.

Having obtained the Riemann function we may use it to solve the general
Qoursat problem for (1.3), where

V(z, r)=fo(z),

V(t, 0 = go(o,

V,(z, r) = fl(Z),

VAt, 0 =gl(O,
(2.11 )
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where the data/k(z), gk(O are required, moreover, to satify the consistency
conditions

(k, m =0,1). (2.12)

We have shown the equivalence of Bergman's and Vekua's method; hence,
we may also represent this solution using the representation (2.3). To this
end, we must first solve for the analytic functions 1k(Z), t/Jk(O (k= 1, 2).
From (2.11) and (2.3) (2.7) we obtain

2

10(Z) = cPI(Z) + L p(lI,k,O)(z, r, t) t/Jk(r),
k~1

2

go(O=t/JI(O+ L p(l,k,O)(t,Cr)cPk(t),
k=1

2

II(z) = cP2(Z) + L [p(II,k,O)(Z, r, t) t/Jk(r) + p(II,k,O)
k=1

. (z, r, t) t/Jk(r) + 1/2P(II,k,I)(z, r, t) t/Jk(r)],

2

gt(O=t/J2(O+ L [P~I,k,0)(t,Cr)1k(t)+p(I,k,0)

k=1

. (t, (, r) cPk(t) + 1/2P(I,k,I)(t, (, r) cPk(t)].

(2.13 )

(2.14)

(2.15 )

(2.16)

Clearly the cPk( t), 1k( t), t/J k(t), t/Jk( t) may be determined from consistency
conditions, which we illustrate below for several special cases.

If we consider Eq. (1.1) of the form

L1 2u+a(x,y)L1u+b(x,y) U.+c(x,y) Uy+d(x,y)u=O, (2.17)

then the complex version of this is

(2.18 )

In this case, the functions X((, t, r) and X*(z, t, r) of (2.8}-(2.1O) satisfy the
simplified initial value problems

and

X=O

X*=O

at (= r,

at Z= t,

dX =1
d(

dX*
-=1
dz

at (= r,

at z = t;

(2.19)
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X((, t, r) = (-r, and X*(z, t, r) =z- t. (2.20)

The operators 0 1 and O 2 , moreover, become

which permits us to compute, using (1.9),

P(I.!,O)(z, (, r) = 1

p(l·J.J)(z, (, r) = -2 rda r ds A(z, s),
< t

and

(2.22)

(2.23 )

p(I,2,1)(z,Cr)= -2 r da rds [L(z,s)+A(z,s)(s-t)]. (2.24)
< <

Likewise,

hence,

and O~(H)= LHz + BH; (2.25 )

P(lI.!,O)( (, z, t) == 1,

p(II,J.J)((,Z, t)= -2rdar B(s, Ods,
t t

(2.26)

(2.27)

and

p(II,2.1)((, z, t)= -2rdards[L(s, O+B(s, O(s-I)]. (2.28)
, t

Putting these coefficients into the equations for the Goursat data
(2.13)-(2.16), that is for

yields

gl(Z) = X((, t, r), 11(0 = X*(z, t, r),

~ 1(t) + (( - r) ~2( t) + l/J 1(0 = 0,

~1(z)+l/Jl(r)+(z-t)l/J2(r)=0,

(2.29)

(2.30)
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~;(t)+(r--~)m;(t,+~,(i,-l,(t)C~dti~A(t,.~)ds
z T

- #z(t) j:: dT j; IIZ46 s)+ 46 s)b - z)l ds

= X(C, 2, z) : = [ - t, (2.31)

O,(~)+~;(~)+(Z-~)~~(~)--~(T)~~=~~~~~B(S,~)~~

- $2(r) 1; da ltu [L(s, z) + B(s,  z)(s - z)(s - r)] ds

=X*(z,t,z):=  z-t. (2.32)

The consistency condition (2.12) permit us to compute from (2.29),
(2.30) that dI(t) + til(z) = 0, from (2.30), (2.32) that #i(t) + I,G~(z) =O, from
(2.29),  (2.31) that &(t)+ $i(r)=O,  and from (2.31), (2.32) that
d;(t)  + I&(Z)  = 1. Normalizing these otherwise arbitrary
provides us with the conditions

&(t)=K(t)=O, #*(t)=O, #i(t) = l/2,

$,(r)=Il/;(r)=O, *2(r) = 0, i&(r) = l/2.

Putting these values into (2.29b(2.32)  yields

A(z) = 0, $1(i)-0,

d*(z)  = Hz - t), $2(C) = &(r - r).

Consequently, the Bergman representation provides
development for the Riemann function, namely

G(t,  r; z, i)

coefficients

(2.33)

(2.34)

us with a series

. st=
1

(z _ s)“-  *(s _ t) ds + P(**.*.n) (z, [, I).~‘(i-~)“-‘(~-r)d~l

=(z-l)(i-T)+; f
II=1

-[
P*qZ, [, T)(Z - ty+ l P,*qZ,  (-, t)(l-  Ty+ l
2*“B(n,n+l)n(n+l)  + 2%I(n,n+l)n(n+l) 1 . (2.35)
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(2.36 )

The general Goursat problem may be set up in the same way as we just
did for the Riemann function. Setting the coefficients (2.22)-)2.28) into the
equations for the Goursat data (2.13)-(2.16) we obtain after normalization

tP I (z) =fo(z) + '" I (r) - (z - t) '"i r),

'" 1(') = go(,) + tP I(t ) - (, - r) tP 2(t ).

Likewise we have

tP2(z)=fl(z)-"'~(r)-(z-t)"';(r)

+ rdu rdS["'I(r) B(s, r) + "'2(r)(L(s, r) + B(s, r)(s- t))]
t I

and

"'2(0=gl(0-tP~(t)-('-r)tP;(t)+rdu rds[tPl(t)A(t,s)
T T

+ tP2(t)(L(t, s) + A(t, s)(s - t))]. (2.37)

The consistency conditions plus normalization give us

tP2(t) = !fl(t) = "'I(r) =! g~(r), "'2(r) = !gl(r)

= !f~(t) = fl(t), tP;(t) = !f'I(t) = "';(r)

=! g~(r).

Hence, from (2.36), (2.37) we have

tPl (z) = fo(z) -! go( r) - !(z - t) g I (r),

'" I(Z) = go(z) - !fo(t) - !(z - r) fl(t).

tP2(Z) = fl(z) -! g~(r) - !(z - t) g~(r)

+~rdur [go(r) B(s, r) + gl(r)(L(s, r)

+ (s - t) B(s, r))] ds,

and

(2.38 )

(2,39)

"'2(0 = gl(O - !f~(t) - !(, - r)f'I(t)

+~rdu [I7

fo(t) A(t, s) + fl(t)(L(t, s) + (s- t) A(t, S))] tis.

Using these expressions for the functions tPk(Z) (k = 1,2), '"k(O (k = 1, 2) in
(2.3) leads to a representation of the Goursat problem with normalized
data.
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III. CONSTANT COEFFICIENTS

65

In this section we consider the special case of Eq. (1.3) where all the coef
ficients are constants. This leads to a great simplification in our results. We
determine first the few coefficients p(l,v.n). As

D I p(l.I,O) : = Pt~I.O) +M p(I.I,O) = 0

p(I,I,O)(Z r r) = 1 P(l,I,O)(Z r r) = 0, , , , " ,
we have

p(I,I,O)(Z, (, r) = cosh },,( ( - t),

where },,2:= -M #0.
The coefficient p(I,I,l) may be computed from the scheme (2.4) to be

(3.1 )

L-A((-r)
p(l,I,I)(Z, (,r)= }" sinh},,((-r)-L(cosh},,((-r). (3.2)

Likewise, using (2.5) we have

p(l,2,O)(Z, (, t)=~sinh((-r),

and

(3.3 )

p(I,2.1)(Z, (, r) = :3 sinh },,(( - r) - (( - r) [~sinh },,(( - r)

+:2cosh},,((-r)} (3.4)

The coefficients p(lI,v,n) are derived in a similar manner starting with

D!p(II,I,O)(Z, (, t):= p~;I,1,O)_/12p(lI,1,O)=0, _/12:= N,

p(lI,I,O)(t, (, t) = 1, p~II,I,O)(t, " t) = O.

We obtain

p(II,I,O)(Z, (, t) = cosh /1(Z - t), (3.5)

p(II,2,O)(Z, (, t) = ~ sinh /1(z - t), (3.6)
/1

p(II,2,1)(t," t) = ~ sinh /1(z - t) - (z - t) [~sinh /1(z - t)
/1 /1

+~cOSh/1(Z-t)l (3.7)
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We now turn to determining the Riemann function for this case. The
function X( (, t, r) satisfies

X(r, t, r)=O,

hence, we have

X( (, t, r) = ~ sinh A(( - r).

In a similar manner we find X* to be

X*(Z, t, r) = ~ sinh Jl(z - t).
Jl

(3.8)

(3.9)

The Goursat data which the Riemann function satisfies leads to the follow
ing equations for the auxillary function rPk> 1/1 k> k = 1.2:

2

0= rPI(Z) + L p(l!.k.O)(z, r, t) I/Ik(r) = rPI(Z) + I/II(r) cosh Jl(z - t)
k~1

+~ 1/12(r) sinh Jl(z- t),
Jl

(3.10)

2

0=1/11(0+ L p(l,k,O)(t,(,r)rPk(t)=I/II(O+rPI(t)coshA«(-r)
k~1

+~rP2(t)SinhA«(-r), (3.11)

~ sinh Jl(z - t) = rP2(Z) + I/I~ (r) cosh Jl(z - t) +~ 1/1;(r) sinh Jl(z - t)
Jl Jl

+~ 1/1 1( r) [!:.. sinh Jl(Z- t) - (z - t)
2 Jl

x G~ sinh Jl(z - t) + L cosh Jl(z - t))]
+~ 1/12(r) l~ sinh Jl(z - t) + (z - t)

x (t sinh Jl(z - t) +; cosh(z - t))l (3.12)
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~ sinh A(' - r) = l/J 2(0 + tP~ (1) cosh A(' - r) + ~ tP;( 1) sinh A(' - r)

+ ~ tP I(1) [~ sinh A(' - r) - (, - r) (~ sinh A(' - r)

+ L cosh A(' - r)) ] +~ tP2(1) [~ sinh A(' - r) + (, - r)

'(~sinhA(,-r)+;2COShA(,-r))} (3.13)

Normalizing the auxillary functions by setting tPI (t) = l/J I(r), l/J 2(r) = tP~ (1),
tP2( 1) = l/J'I (r), tP;( 1) = l/J;( r) one may solve the above equations to obtain

tPI(Z)=O, l/JI(Z)=O,

tP2(Z) = 2~ sinh f.l(z - 1),

l/J2(O = 2
1
Asinh A(' - r).

(3.14)

(3.15)

Using these in the representation (2.3) yields the following series represen
tation for the Riemann function

1 . 2 1 00 p(l.2.n)(z,', r)
G(1, r, z, 0 =2"2 smh f.l(z- t) +-2 L 22nB( 1)

f.l f.l n= I n, n+

.r(z - st - I sinh f.l(s - t) ds + 2~2sinh2 A(' - r)

1 00 p(II,2.n)(z , r) f'
+ 2A n~ I 22nB(n, ~ ~ 1) "' (, - 11t - 1

. sinh A(I1- r) dl1,

where A2:= -M, f.l2:= -N.
For the general Goursat problem with the data

U(Z, r) = lo(z),

U(t, 0 =go(O,

U,(Z, r) =II(Z),

UAt,O=gl(O,
(3.16)

where l(m)(1) = g(k)(r), m, k = 0, 1, a similar procedure leads to determining
the associated analytic functions as

640/44/1-5
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1 1.
~I(Z) = lo(z) --2 go(r) cosh Ji(z - t) - - gl (r) smh Ji(z - t),

2Ji

1 1.
1/11 (s) = go(O - 2/0(1) cosh A.«( - r) - 2Ji/l (t) smh A.«( - r),

~2(Z) =II (z) - ~ (g~(r) cosh Ji(z - t) +~ g'l(r) sinh Ji(z - t))

-~ go(r) [~sinh Ji(z - t) - (z - t)
4 Ji

x (~sinh Ji(z - t) + L cosh Ji(z - t)) ]

-~ gl(r) [B sinh Ji(z - t) - (z - t)4 Ji3

x (t sinh Ji(z - t) +; cosh Ji(z - t)) J.

1/1 2(() =g I(r) - ~ ( I~( t) cosh A.( ( - r) +~I; (t) sinh A.(( - r) )

10(1) [L .--4- I smh A.«( - r) - «( - r)

x (4 sinh A.( ( - r) + L cosh A.( ( - r )) ]

- ~II (t) [~ sinh A.( ( - r) - «( - r)

x (~sinh A.«( - r) +12 cosh A.«( - r))1
REFERENCES

(3.17)

1. S. BERGMAN, "Integral Operators in the Theory of Linear Partial Differential Equations,"
Springer-Verlag, Heidelberg, 1969.

2. S. BERGMAN, Solutions of linear partial differential equations of one fourth order, Duke
Math. J. 11 (1944), 617-649.

3. V. A. KISELEV, Calculations of rectangular orthotropic plates lying on an elastic foundation
with two foundation moduli and subject to static and pulsating loads, in "Theory of Shells
and Plates," Proceedings 4th All-Union Conference on Shells and Plates held at Erevan,
24-31 October, 1962. [Trans. from Russian, U.S. Dept. of Commerce, Springfield, 1966.]

4. I. N. VEKUA, "New Methods for Solving Elliptic Equations," North-Holland, Amsterdam,
1967. '


